

Simplified Bernoulli Method to Diagnose Functional Ischemia by Coronary CTA: **Comparison with SPECT**

Nobuo Tomizawa, Kodai Yamamoto, Shinichi Inoh, Takeshi Nojo, Sunao Nakamura

New Tokyo Hospital, Matsudo, JAPAN

Background

- Importance of PCI with evidence of ischemia is important to improve the patient outcome.
- FFRCT is an FDA approved method to assess ischemia

Results	

Patient Demographics

Number	43	Disease severity	
Male / female	32 / 11	1 vessel disease	11 (26)
Age (y)	73.6 ± 6.6	2 vessel disease	6 (14)
Body weight (kg)	60.6 ± 11.1	3 vessel disease	1 (2)
BMI (kg/m ²)	23.1 ± 2.6	Disease location	
Risk factor		RCA	3(7)
Diabetes	12 (28)		14 (33)
Hypertension	36 (84)		L(Z)

using coronary CTA data but additional cost is necessary.

• Pressure loss across coronary stenosis could be easily estimated using *simplified Bernoulli formula*.

Estimating Pressure Loss

Braunwald's Heart Disease. Elsevier

2004

$$\Delta P = Q \frac{8\pi\mu LL}{MLA^2} + Q^2 \frac{\rho}{2} \frac{(1 - (1 - DS/100)^2)^2}{MLA^2}$$

Consists of two terms:

1st term Viscous friction

2nd term Turbulent non-laminar

distal flow

Simplified Bernoulli Formula

Definition of estimated energy loss (EEL) $EEL = \log(\Delta P)$

0 (11	
Body weight (kg)	60.6 ± 11.1
BMI (kg/m²)	23.1 ± 2.6
Risk factor	
Diabetes	12 (28)
Hypertension	36 (84)
Dyslipidemia	29 (67)
Smoking	31 (72)
Family history	11 (26)
Calcium score	468.7
	(142.5–848.7)

FFR positive
26 out of 127 vessels (20%)

EEL vs SPECT: ROC Curve & Diagnostic Performance

Per-vessel	EEL	SPECT
Accuracy	90 (83–94)	81 (73–88)
Sensitivity	81 (61–93)	42 (23–63)
Specificity	92 (85–97)	91 (84–96)
PPV	72 (53–87)	55 (32–77)
NPV	95 (89–98)	86 (78–92)

EEL significantly (p < 0.05)

Parameters needed for calculation:

- lesion length •LL •MLA minimal lumen area
- •DS diameter stenosis
- coronary flow at hyperemia •Q

Objective

To compare the diagnostic performance of EEL and SPECT to predict FFR positive stenosis by cath.

Methods

Patients

A total of 43 patients suspected of IHD by coronary CTA who underwent both SPECT and invasive FFR were retrospectively included.

CTA analysis

improved the accuracy to diagnose FFR positive stenosis.

SPECT analysis

Stress Rest

LL, DS, MLA were acquired by using a software (VINCENT ver 5.2; Fujifilm Medical, Tokyo, Japan). Voronoi method was used to estimate the myocardial volume of the stenotic territory. The flow at hyperemia was estimated as 4.0 ml/min/g. FFR analysis

Criteria for ischemia EEL>1.17; fill-in at SPECT; FFR ≤0.80

Summary & Conclusion

- > EEL improved the diagnostic performance of coronary CT to detect ischemic stenosis compared with SPECT.
- The accuracy of EEL was 90%.
- EEL outperformed SPECT in sensitivity.
- > EEL would enable to assess ischemia on-site very easily without spending time!

Conflict of Interest

The authors have no conflict of interest to disclose.